Controlled *-G-Frames and their *-G-Multipliers IN Hilbert C*-Modules

نویسندگان

  • Akbar Nazari Department of Pure Mathematics, Faculty of Mathematics and Computer Shahid Bahonar University of Kerman, 76169-14111, Kerman, Iran.
  • Zahra Ahmadimoosavi Department of Pure Mathematics, Faculty of Mathematics and Computer Shahid Bahonar University of Kerman, 76169-14111, Kerman, Iran.
چکیده مقاله:

In this paper we introduce controlled *-g-frame and *-g-multipliers in Hilbert C*-modules and investigate the properties. We demonstrate that any controlled *-g-frame is equivalent to a *-g-frame and define multipliers for (C,C')- controlled*-g-frames .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled Continuous $G$-Frames and Their Multipliers in Hilbert Spaces

In this paper, we introduce $(mathcal{C},mathcal{C}')$-controlled continuous $g$-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frames is a $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frame. Also, we investigate when a $(mathcal{C},mathca...

متن کامل

G-frames and their duals for Hilbert C*-modules

Abstract. Certain facts about frames and generalized frames (g- frames) are extended for the g-frames for Hilbert C*-modules. It is shown that g-frames for Hilbert C*-modules share several useful properties with those for Hilbert spaces. The paper also character- izes the operators which preserve the class of g-frames for Hilbert C*-modules. Moreover, a necessary and suffcient condition is ob- ...

متن کامل

The study on controlled g-frames and controlled fusion frames in Hilbert C*-modules

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...

متن کامل

(C; C\')-Controlled g-Fusion Frames in Hilbert Spaces

Controlled frames in Hilbert spaces have been recently introduced by P. Balazs and etc. for improving the numerical efficiency of interactive algorithms for inverting the frame operator. In this paper we develop a theory based on g-fusion frames on Hilbert spaces, which provides exactly the frameworks not only to model new frames on Hilbert spaces but also for deriving robust operators. In part...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

g-frames and their duals for hilbert c*-modules

abstract. certain facts about frames and generalized frames (g- frames) are extended for the g-frames for hilbert c*-modules. it is shown that g-frames for hilbert c*-modules share several useful properties with those for hilbert spaces. the paper also character- izes the operators which preserve the class of g-frames for hilbert c*-modules. moreover, a necessary and suffcient condition is ob- ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 2

صفحات  120- 136

تاریخ انتشار 2019-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023